228. Жизненная ёмкость лёгких и составляющие её компоненты. Методы их определения. Остаточный объём.
Характеризует резервные возможности внешнего дыхания жизненная ёмкость лёгких (ЖЕЛ).
Это тот объём воздуха, который человек максимально может вдохнуть после максимального глубокого выдоха. В среднем это величина составляет 3500 мл. Чем выше жизненная ёмкость, тем лучше снабжается организм кислородом. Жизненная ёмкость лёгких, как правило, выше у мужчин и у физически тренированных лиц.
Жизненная емкость легких – то количество воздуха, которое способен выдохнуть человек после глубокого вдоха. Она является одним из показателей физического развития организма и считается патологической, если составляет 70–80 % от должного объема. В течение жизни данная величина может меняться. Это зависит от ряда причин: возраста, роста, положения тела в пространстве, приема пищи, физической активности, наличия или отсутствия беременности.
Жизненная емкость легких состоит из дыхательного и резервного объемов. Дыхательный объем – это то количество воздуха, которое человек вдыхает и выдыхает в спокойном состоянии. Его величина составляет 0,3–0,7 л. Он поддерживает на определенном уровне парциальное давление кислорода и углекислого газа в альвеолярном воздухе. Резервный объем вдоха – количество воздуха, которое может дополнительно вдохнуть человек после спокойного вдоха. Как правило, это 1,5–2,0 л. Он характеризует способность легочной ткани к дополнительному растяжению. Резервный объем выдоха – то количество воздуха, которое можно выдохнуть вслед за нормальным выдохом.
Остаточный объем – постоянный объем воздуха, находящийся в легких даже после максимального выдоха. Составляет около 1,0–1,5 л.
Лёгочные объёмы:
1. Дыхательный объём (ДО) = 500 мл
2. Резервный объём вдоха (РОвдоха)= 1500-2500 мл
3. Резервный объём выдоха (РОвыдоха)=1000 мл
4. Остаточный объём (ОО) = 1000 -1500мл
Лёгочные ёмкости:
— общая ёмкость лёгких (ОЕЛ)= (1+2+3+4) = 4-6 литров
— жизненная ёмкость лёгких (ЖЕЛ) = (1+2+3) =3,5-5 литров
— функциональная остаточная ёмкость лёгких (ФОЕ) = (3+4 ) = 2-3 литра
— ёмкость вдоха (ЕВ) = (1+2) = 2-3 литра
229. Минутный объём вентиляции лёгких и его изменения при различных нагрузках, методы его определения. «Вредное пространство» и эффективная лёгочная вентиляция. Почему редкое и глубокое дыхание более эффективно.
Движение воздуха в лёгких во время дыхания называют лёгочной вентиляцией. Она характеризуется минутным объёмом дыхания.
Минутный объём дыхания(МОД) – это то количество воздуха, которое проходит через лёгкие за одну минуту.
МОД зависит от величин дыхательного объёмаи частоты дыханийв минуту.
Дыхательный объём– это то количество воздуха, которое поступает в лёгкие при одном спокойном вдохе.
Его величина, в среднем, составляет 500 мл, частота дыханий за минуту равна 12-16 и, следовательно, минутный объём дыхания, в среднем, составляет 6-8 л.
Однако, не весь воздух, поступивший в органы дыхания, принимает участие в газообмене. Часть воздуха заполняет воздухоносные пути (гортань, трахею, бронхи, бронхиолы) и не доходит до альвеол, поскольку при выдохе первым покидает организм.
Этот воздух получил название – воздух вредного пространства. Его объём, в среднем, составляет 140-150 мл. Поэтому вводится понятие эффективная лёгочная вентиляция.
Это то количество воздуха за одну минуту, которое принимает участие в газообмене.
Эффективная лёгочная вентиляцияпри одном и том же минутном объёме дыхания может быть различной. Так, чем
studfile.net
Легочные объемы и емкости
Для функциональной характеристики дыхания принято использовать различные легочные объемы и емкости. Легочные объемы подразделяются на статические и динамические. Первые измеряют при завершенных дыхательных движениях. Вторые измеряют при проведении дыхательных движений и с ограничением времени на их выполнение. Емкость включает в себя несколько объемов.
Объем воздуха в легких и дыхательных путях зависит от следующих показателей: 1) антропометрических индивидуальных характеристик человека и строения дыхательной системы; 2) свойств легочной ткани; 3) поверхностного натяжения альвеол; 4) силы, развиваемой дыхательными мышцами.
Дыхательный объем (ДО) — объем воздуха, который вдыхает и выдыхает человек во время спокойного дыхания (рис. 5). У взрослого человека ДО составляет примерно 500 мл. Величина ДО зависит от условий измерения (покой, нагрузка, положение тела). ДО рассчитывают как среднюю величину после измерения примерно шести спокойных дыхательных движений.
Резервный объем вдоха (РО вд) — максимальный объем воздуха, который способен вдохнуть испытуемый после спокойного вдоха. Величина РО вд составляет 1,5—1,8 л.
Резервный объем выдоха (РО выд)—максимальный объем воздуха, который человек дополнительно может выдохнуть после спокойного выдоха. Величина РО выдоха ниже в горизонтальном положении, чем в вертикальном, уменьшается при ожирении. Она равна в среднем 1,0—1,4 л.
Остаточный объем (ОО) — объем воздуха, который остается в легких после максимального выдоха. Величина остаточного объема равна 1,0—1,5 л.
Исследование динамических легочных объемов представляет научный и клинический интерес, и их описание выходит за рамки курса нормальной физиологии,
Легочные емкости. Жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. У мужчин среднего возраста ЖЕЛ варьирует в пределах 3,5—5,0 л и более. Для женщин типичны более низкие величины (3,0—4,0 л). В зависимости от методики измерения ЖЕЛ различают ЖЕЛ вдоха, когда после полного выдоха производится максимально глубокий вдох и ЖЕЛ выдоха, когда после полного вдоха производится максимальный выдох.
Емкость вдоха (Е вд) равна сумме дыхательного объема и резервного объема вдоха. У человека Е вд составляет в среднем 2,0-2.3 л.
Рисунок 5. Легочные объемы и емкости
Функциональная остаточная емкость (ФОЕ) — объем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и остаточного объема. ФОЕ измеряется методами газовой дилюции, или «разведения газов» и плетизмографически. На величину ФОЕ существенно влияет уровень физической активности человека и положение тела: ФОЕ меньше в горизонтальном положении тела, чем в положении сидя или стоя. ФОЕ уменьшается при ожирении вследствие уменьшения общей растяжимости грудной клетки.
Общая емкость легких (ОЕЛ) — объем воздуха в легких по окончании полного вдоха. ОЕЛ рассчитывают двумя способами:
ОЕЛ = 00 + ЖЕЛ или ОЕЛ = ФОЕ + Евд. ОЕЛ может быть измерена с помощью плетизмографии или методом газовой дилюции.
Измерение легочных объемов и емкостей имеет клиническое значение при исследовании функции системы внешнего дыхания у здоровых людей и при диагностике заболевания легких.
studfile.net
остаточный объем легких — это… Что такое остаточный объем легких?
- остаточный объем легких
- (ООЛ; син. остаточный воздух устар.) — объем воздуха, остающийся в легких после максимального выдоха.
Большой медицинский словарь. 2000.
- остаточный воздух
- Остен-Сакена контрактура
Смотреть что такое «остаточный объем легких» в других словарях:
остаточный объем легких — rus остаточный объем (м) легких eng residual volume, RV fra volume (m) résiduel, VR deu Residualvolumen (n), RV spa volumen (m) residual, VR … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки
Объем Легких Остаточный (Residual Volume) — количество воздуха, остающегося в легких после максимального выдоха. Этот объем увеличивается в случае развития у человека эмфиземы легких. Источник: Медицинский словарь … Медицинские термины
ОБЪЕМ ЛЕГКИХ ОСТАТОЧНЫЙ — (residual volume) количество воздуха, остающегося в легких после максимального выдоха. Этот объем увеличивается в случае развития у человека эмфиземы легких … Толковый словарь по медицине
остаточный воздух — (устар) см. Остаточный объем легких … Большой медицинский словарь
ВОЗДУХА ОБЪЁМ ОСТАТОЧНЫЙ
Дыхание — I Дыхание (respiratio) совокупность процессов, обеспечивающих поступление из атмосферного воздуха в организм кислорода, использование его в биологическом окислении органических веществ и удаление из организма углекислого газа. В результате… … Медицинская энциклопедия
Функциона́льная диагно́стика — раздел диагностики, содержанием которого являются объективная оценка, обнаружение отклонений и установление степени нарушений функции различных органов и физиологических систем организма на основе измерения физических, химических или иных… … Медицинская энциклопедия
Бодиплетизмография — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка… … Википедия
Оста́точный во́здух — (устар.) см. Остаточный объем легких (Остаточный объём лёгких) … Медицинская энциклопедия
ООЛ — см. Остаточный объем легких … Большой медицинский словарь
dic.academic.ru
33. Легочные объемы и емкости
Легочные объемы и емкости
В процессе легочной вентиляции непрерывно обновляется газовый состав альвеолярного воздуха. Величина легочной вентиляции определяется глубиной дыхания, или дыхательным объемом, и частотой дыхательных движений. Во время дыхательных движений легкие человека заполняются вдыхаемым воздухом, объем которого является частью общего объема легких. Для количественного описания легочной вентиляции общую емкость легких разделили на несколько компонентов или объемов. При этом легочной емкостью называется сумма двух и более объемов.
Легочные объемы подразделяют на статические и динамические. Статические легочные объемы измеряют при завершенных дыхательных движениях без лимитирования их скорости. Динамические легочные объемы измеряют при проведении дыхательных движений с ограничением времени на их выполнение.
Легочные объемы. Объем воздуха в легких и дыхательных путях зависит от следующих показателей: 1) антропометрических индивидуальных характеристик человека и дыхательной системы; 2) свойств легочной ткани; 3) поверхностного натяжения альвеол; 4) силы, развиваемой дыхательными мышцами.
Дыхательный объем (ДО) — объем воздуха, который вдыхает и выдыхает человек во время спокойного дыхания. У взрослого человека ДО составляет примерно 500 мл. Величина ДО зависит от условий измерения (покой, нагрузка, положение тела). ДО рассчитывают как среднюю величину после измерения примерно шести спокойных дыхательных движений.
Резервный объем вдоха (РОвд) — максимальный объем воздуха, который способен вдохнуть испытуемый после спокойного вдоха. Величина РОвд составляет 1,5—1,8 л.
Резервный объем выдоха (РОвыд) — максимальный объем воздуха, который человек дополнительно может выдохнуть с уровня спокойного выдоха. Величина РОвыд ниже в горизонтальном положении, чем в вертикальном, уменьшается при ожирении. Она равна в среднем 1,0—1,4 л.
Остаточный объем (ОО) — объем воздуха, который остается в легких после максимального выдоха. Величина остаточного объема равна 1,0—1,5 л.
Легочные емкости. Жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. У мужчин среднего возраста ЖЕЛ варьирует в пределах 3,5—5,0 л и более. Для женщин типичны более низкие величины (3,0—4,0 л). В Зависимости от методики измерения ЖЕЛ различают ЖЕЛ вдоха, когда после полного выдоха производится максимально глубокий вдох и ЖЕЛ выдоха, когда после полного вдоха производится максимальный выдох.
Емкость вдоха (Евд) равна сумме дыхательного объема и резервного объема вдоха. У человека Евд составляет в среднем 2,0—2,3 л.
Функциональная остаточная емкость (ФОЕ) — объем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и остаточного объема. На величину ФОЕ существенно влияет уровень физической активности человека и положение тела: ФОЕ меньше в горизонтальном положении тела, чем в положении сидя или стоя. ФОЕ уменьшается при ожирении вследствие уменьшения общей растяжимости грудной клетки.
Общая емкость легких (ОЕЛ) — объем воздуха в легких по окончании полного вдоха. ОЕЛ рассчитывают двумя способами: ОЕЛ — ОО + ЖЕЛ или ОЕЛ — ФОЕ + Евд.
Статические легочные объемы могут снижаться при патологических состояниях, приводящих к ограничению расправления легких. К ним относятся нейромышечные заболевания, болезни грудной клетки, живота, поражения плевры, повышающие жесткость легочной ткани, и заболевания, вызывающие уменьшение числа функционирующих альвеол (ателектаз, резекция, рубцовые изменения легких).
studfile.net
2. Легочные объемы
Легочные объемы (табл. 22-1 и рис. 22-5) — это важные параметры в физиологии дыхания и клинической практике. Сумма всех перечисленных объемов равняется максимальному объему, до которого могут быть расправлены легкие. Легочные емкости представляют собой сумму двух и более объемов.
Рис. 22-5. Спирограмма, показывающая статические легочные объемы. (С разрешения. Из: Nunn J. F. Applied Respiratory Physiology, 3rd ed. Butterworths, 1987.)
Функциональная остаточная емкость
Объем легких в конце спокойного выдоха называется функциональной остаточной емкостью (ФОБ).
При этом объеме направленная вовнутрь эластическая тяга легких равна направленной наружу эластической тяге грудной клетки (включая тонус диафрагмы в покое). Таким образом, положение равновесия эластических сил грудной клетки и легких определяет точку, от которой начинается вдох при спокойном дыхании. Функциональная остаточная емкость может быть измерена при помощи методики вымывания азота или поглощения гелия, а также методом общей плетизмографии. На величину ФОБ влияют следующие факторы:
• Антропометрические характеристики: ФОБ прямо пропорциональна росту. Ожирение ощутимо снижает ФОБ, в первую очередь за счет уменьшения растяжимости грудной стенки.
• Пол: у женщин ФОБ приблизительно на 10 % меньше, чем у мужчин.
• Положение тела: ФОБ уменьшается при перемещении из вертикального положения в положение лежа на спине или на животе. Уменьшение ФОБ обусловлено снижением растяжимости грудной стенки в результате давления органов брюшной полости на диафрагму. Наибольшие изменения происходят при наклоне тела под углом от 0° до 60° к вертикали. При опускании головного конца вплоть до 30° к горизонтали дальнейшего уменьшения ФОБ не происходит.
• Болезни легких: рестриктивные нарушения характеризуются снижением растяжимости легких и/или грудной стенки (гл. 23), что всегда сопровождается снижением ФОБ.
• Тонус диафрагмы: хороший тонус диафрагмы способствует увеличению ФОБ.
Емкость закрытия
Как описано выше (Функциональная анатомия системы дыхания; с. 117.), диаметр мелких дыхательных путей, не имеющих хрящевой основы, зависит от радиальной эластической тяги окружающих тканей, которая не позволяет им спадаться. Проходимость этих дыхательных путей, особенно в базальных отделах легких, сильно зависит от объема легких. Объем, при котором мелкие дыхательные пути начинают спадаться, называется емкостью закрытия. При малых легочных объемах альвеолы, расположенные в этих отделах легких, продолжают перфузироваться, но не вентилируются; внутрилегочное шунтирование деоксигенированной крови приводит к гипоксемии (см. ниже). Емкость закрытия обычно измеряется при помощи тест-газа (133Хе): обследуемый делает максимальный выдох, затем — максимальный вдох из емкости с тест-газом, после чего опять максимальный выдох.
Емкость закрытия обычно значительно меньше, чем ФОЕ (рис. 22-6), но с увеличением возраста человека она постепенно повышается (рис. 22-7). Этот факт, возможно, является причиной наблюдающегося в норме у людей возрастного снижения напряжения кислорода в артериальной крови. В положении лежа на спине емкость закрытия становится равна ФОБ в среднем в возрасте 44 лет; в возрасте 66 лет у большинства людей в вертикальном положении емкость закрытия становится равна или превышает ФОБ. В отличие от ФОБ, положение тела на емкость закрытия не влияет.
Рис. 22-6. Соотношение между функциональной остаточной емкостью, объемом закрытия и емкостью закрытия. (С разрешения. Из. Nunn J. F. Applied Respiratory Physiology, 3rd ed. Butterworths, 1987.)
Рис. 22-7. Влияние возраста на емкость закрытия и на соотношение между емкостью закрытия и функциональной остаточной емкостью. Заметим, что ФОБ не изменяется (С разрешения. Из: NunnJ. F. Applied Respiratory Physiology, 3rd ed Butterworths, 1987.)
Жизненная емкость легких
Жизненная емкость легких (ЖЕЛ) — это объем воздуха, выдыхаемый при максимальном выдохе после максимального вдоха. На ЖЕЛ, помимо антропометрических характеристик, влияют также сила дыхательных мышц и общая растяжимость легких и грудной клетки. В норме ЖЕЛ составляет 60-70 мл/кг.
studfile.net
Остаточный объем легких: основные методы определения
Показатели объема легких необходимы для выявления легочных болезней и определения стадий их развития. Такие исследования назначаются пульмонологами, аллергологами, иммунологами. Остаточный объем легких относится к одним из показателей данного обследование. Его учитывают при расчете функционального и жизненного объема легких взрослых, и детей.
Содержание:
Основные функции легких человека
Дыхание относится к жизненно важным функциям человеческого организма. С его помощью происходит обогащение тканей всего тела кислородом и выводится углекислый газ. Данный процесс обеспечивают легкие человека – главный орган дыхательной системы человека. В них происходит газообмен между атмосферным воздухом и кровью, что позволяет бесперебойно доставлять по капиллярам кислород ко всем органам человеческого организма. Это является основной функцией легких, но также принимают непосредственное участие и в других, не менее важных функциях организма. К ним относятся:
- Синтез гормонов
- Липидный обмен
- Теплорегуляция
- Свертывание крови
- Поддержание водно-солевого баланса
- Регулировка кислотно-щелочного баланса
- Также, в развитой сосудистой системе легких происходит депонирование крови.
Функциональность дыхательной системы человека напрямую зависит от состояния легких. В здоровом состоянии легкие имею структуру пористой ткани пронизанную бронхами, на концах которых расположены альвеолы. Это маленькие воздушные пузырьки. При дыхании, легкие наполняются определенным количеством воздуха.
Это и есть жизненная емкость легких. Данный показатель у каждого человека индивидуален.
При патологических процессах в легких часто происходит отмирание клеток тканей, сужение просветов и накопление вредных веществ. Такое состояние органа нарушает полноценное обогащение организма кислородом, что приводит к развитию дыхательной (респираторной) гипоксии. Негативное влияние данной патологии проявляется в виде:
- Малокровия
- Авитаминоза
- Заболеваний почек
- Нарушений функций головного мозга
- Дисфункции сердечно-сосудистой системы
От состояния легких зависит работа всех систем организма человека. Поэтому важно следить за изменениями в своем организме и при первых ухудшениях самочувствия пройти полное обследование. При изучении работы легких, в медицинской практике в первую очередь измеряют жизненную емкость, которая определяется разницей между общей и остаточным объемом легких.
Показания, противопоказания к исследованию остаточного объема легких
Норма легочных объемов рассчитывается в каждом случае индивидуально. На нее влияет не только физическое стояние организма, но и рост, возраст, пол, размеры грудной клетки и расположение тела во время исследования.
Кроме того, данные показатели, даже у здоровых людей с возрастом могут изменять свои пропорции. Жизненная емкость легких с возрастом постепенно уменьшается, а остаточная наоборот увеличивается. Причем показатель общей емкости практически не изменяется.
Остаточным объемом легких обозначается объем воздуха, который остается в легких после максимального экспираторного усилия. Он зависит от способности поддерживать длительный выдох и проходимости мелких дыхательных путей. Подразделяется на два основных вида:
- Коллапсный – это количество воздуха, которое покидает легкие при двустороннем пневмотораксе.
- Минимальный – остаточный объем воздуха в тканях легких после пневмоторокса.
Измерение остаточного объема легких проводится с целью получения точной информации о структуре общей емкости легких. Показатели резервного объема необходимы для определения функциональной остаточной емкости. Эта величина рассчитывается путем суммирования величин остаточного объема легких и резервного объемы выдоха. По результатам определяется уровень растяжения легких и степень их вздутия.
Данное обследование проводится при следующих легочных патологиях:
- Бронхиальная астма
- Закрытые повреждения легких
- Сердечно-сосудистые заболевания
- Предоперационная оценка состояния
- Хроническая обструктивная болезнь легких
- Нарушение проходимости дыхательных путей
- Дыхательная недостаточность
Также врачи могут рекомендовать пройти обследование при наличии аллергии и иммунных заболеваний.
Как любая медицинская процедура, определение остаточного объема легких, имеет ряд противопоказаний. Данное исследование нельзя проводить:
- При развившимся пневмотораксе и спустя две недели после его разрешения.
- В первые 14 суток после инфаркта миокарда.
- После полостных офтальмологических операций на протяжении двух недель.
- При длительном и выраженном кровохарканье.
- При бронхиальной астме тяжелой формы протекания.
- При острых респираторных заболеваниях.
Исследование остаточного объема легких назначается лечащим врачом с учетом состояния пациента и его физиологических особенностей.
Для проведения исследования остаточного объема легких особой подготовки не требуется. Главное, чтобы процедура проводилась в состоянии покоя. Для этого, непосредственно перед манипуляцией необходимо выровнять дыхание и расслабиться.
Способы определения остаточного объема легких
Одним из основных способов определения объема легких является спирография. Но для измерения остаточного объема данный метод не используется. В медицинской практике для определения резидуального объема легких применяют следующие исследования:
- Газоаналитические
- Аппаратные
К первой группе относятся:
Метод разведения гелия. При данном исследовании спирометр закрытого типа наполняется гелием, разведенным кислородом. Данная газовая смесь не имеет цвета, запаха и вкуса. Она относится к нетоксичным компонентам и не оказывает негативного влияния на организм.
Схема проведения процедуры: манипуляция проводится в положении сидя. На нос прикрепляется специальный зажим, далее пациент производит максимальный выдох в загубник спирометра. Затем дыхание выравнивается. Для этого необходимо несколько минут спокойно подышать. После чего производится максимальный вдох и повторный максимальный выдох. Процедура повторяется спустя 5-10 минут.
Метод вымывания азота. Его основой является принцип сохранения массы. Он позволяет измерить количество воздуха в дыхательных путях, где отсутствует газообмен.
Схема проведения: пациент надевает кислородную маску и дышит 100% кислородом. Делается глубокий вдох и максимальный выдох в спирометр. По процентному содержанию азота определяется остаточное количество выдыхаемого газа. Этот показатель равен обозначает остаточный объем легких.
При аппаратном обследовании используется бодиплетизмография. Эта процедура проводится в герметичной будке, оснащенной специальным медицинским оборудованием.
Схема проведения: пациент заходит в подготовленное помещение и производит максимальный выдох в загубник. Далее загубник закрывается, и дыхание производится с определенным усилием. Это способствует расширению легких и их объему. Полученные данные используются врачом для расчета остаточного объема легких.
Данные процедуры должен проводить только квалифицированный специалист или врач функциональной диагностики. Соблюдение технологии обязательно. Так как небольшие отклонения в виде неплотно прилегающего загубника, нарушения герметизации или покашливания пациента могут значительно исказить правильность полученных данных.
Для определения точного остаточного объема легких, специалисты рекомендую проходить обследование несколько раз и желательно разными способами. Именно так можно установить правильный показатель с минимальной погрешностью.
Во время просмотра видео вы узнаете о работе легких.
По показателям остаточного объема легких можно определить патологические процессы дыхательной системы человека. Такие данные необходимы врачу для установления точного диагноза и подбора правильного терапевтического курса.
morehealthy.ru
Легочные объемы и емкости легких. — Студопедия.Нет
Легочные объемы:
1. Дыхательный объем (ДО)-количество воздуха, поступающего в легкие за один спокойный вдох (500 мл).
2. Резервный объем вдоха (РОВД) — максимальное количество воздуха, которое человек может вдохнуть после нормального выдоха (2500 мл).
3. Резервный объем выдоха (РОвыд) — максимальное количество воздуха, которое человек может выдохнуть после спокойного вдоха (1000 мл).
4. После максимально глубокого выдоха в легких остается воздух, который называется остаточным объемом (С; 1000 мл).
5. Объем дыхательных путей («мертвое пространство», МП) составляет в среднем 150 мл.
Емкости:
1) общая емкость легких (ОЕЛ) — объем воздуха, находящегося в легких после максимального вдоха — все четыре объема;
2) жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. ЖЕЛ — это объем воздуха, выдохнутого из легких после максимального вдоха при максимальном выдохе. ЖЕЛ = ОЕЛ — остаточный объем легких. ЖЕЛ составляет у мужчин 3,5 — 5,0 л, у женщин — 3,0 —4,0 л;
3) емкость вдоха (ЕВД) равна сумме дыхательного объема и резервного объема вдоха, составляет в среднем 2,0 — 2,5 л;
4) функциональная остаточная емкость (ФОЕ) — объем воздуха в легких после спокойного выдоха. В легких при спокойном вдохе и выдохе постоянно содержится примерно 2500 мл воздуха, заполняющего альвеолы и нижние дыхательные пути. Благодаря этому газовый состав альвеолярного воздуха сохраняется на постоянном уровне.
Количественная характеристика вентиляции легких.
Суммарное количество воздуха, которое вмещают легкие после максимального вдоха, называется общей емкостью легких (ОЕЛ). Она включает дыхательный объем, резервный объем вдоха, резервный объем выдоха и остаточный объем. ОЕЛ=ДО+РОвдоха
Дыхательный объем (ДО) — это количество воздуха поступающего в легкие во время спокойного вдоха. Его величина 300-800 мл. У мужчин в среднем 600-700 , мл, у женщин 300-500 мл.
Резервный объем вдоха (РОвдоха). Количество воздуха, которое можно дополнительно вдохнуть после спокойного вдоха. Он составляет 2000-3000 мл. Этот объем определяет резервные возможности дыхания, т.к. за счет него возрастает дыхательный объем при физической нагрузке.
Резервный объем выдоха (РОвыдоха). Это объем воздуха, который можно дополнительно выдохнуть после спокойного выдоха. Он равен 1000-1500 мл.
Остаточный объем (ОО). Это объем воздуха остающегося в легких после максимального выдоха. Его величина 1200-1500 мл.
Функциональный остаточная емкость (ФОЕ) — это количество воздуха, остающегося в легких после спокойного выдоха, т.е. это сумма остаточного объема и резервного объема выдоха. С помощью ФОЕ выравниваются колебания концентрации О2 и СО2 в альвеолярном воздухе в фазы вдоха и выдоха. В молодом возрасте она около 2500 мл, старческом 3500 (пневмофиброз, эмфизема).
Сумма дыхательного объема, резервного объема вдоха и резервного объема выдоха составляет жизненную емкость легких (ЖЕЛ). У мужчин она составляет 3500-4500 мл, в среднем 4000 мл. У женщин 3000-3500 мл. Величину жизненной емкости легких и составляющих ее объемов можно измерить с помощью сухого и водяного спирометров, а также спирографа. ЖЕЛ=ДО+РОвдоха+РОвыдоха
Для газообмена в легких имеет большое значение скорость обмена альвеолярного воздуха, т.е. вентиляция альвеол. Ее количественным показателем является минутный объем дыхания (МОД). Это произведение дыхательного объема на частоту дыханий в минуту. В покое МОД составляет 6-8 литров. Максимальной объем вентиляции — это объем воздуха проходящего через легкие npи наибольшей глубине и частоте дыхания в минуту.
Нормальное дыхание называется эйпное, учащенное — тахипное, его урежение брадипное, одышка — диспное, остановка дыхания — апное. Выраженная одышка в положении лежа, при недостаточности левого сердца — ортопное.
Альвеолярная вентиляция легких.
Газовая смесь, поступившая в легкие при вдохе, распределяется на две части. Одна из них не принимает участие в газообмене, т.к. заполняет воздухоносные пути (анатомически мертвое пространство). Другая часть (альвеолярный объем) поступает в респираторный отдел (альвеолярные протоки, мешочки и альвеолы), где принимает участие в газообмене. Она обеспечивает вентиляцию альвеолярного пространства.
Особенности альвеолярной вентиляции:
-интенсивность обновления газового состава, определяемая соотношением альвеолярного объема и альвеолярной вентиляции.
-изменения альвеолярного объема (увеличение/уменьшение размера вентилируемых альвеол, либо изменение кол-ва альвеол, участвующих в вентиляции).
-различия внутрилегочных характеристик сопротивления и эластичности, приводящее к асинхронности альвеолярной вентиляции.
-поток газов в альвеолу или из нее определяется механическими характеристиками легких и дыхательных путей, а также силами (или давлением), воздействующими на них. Механические характеристики обусловлены сопротивлением дыхательных путей потоку воздуха и эластическими св-ва легочной паренхимы.
Размеры альвеолярного пространства таковы, что смешивание газов в альвеолярной единице происходит практически мгновенно как следствие дыхательных движений, кровотока и диффузии.
Неравномерность альвеолярной вентиляции обусловлена и гравитационным фактором-разницей транспульмонального давления в верхних и нижних отделах грудной клетки. В вертикальном положении в нижних отделах это давление выше примерно на 8 см.вод.ст. Апико-базальный градиент всегда присутствует независимо от степени наполнения легких→определяет наполнение воздухом альвеол в разных отделах легких.
В норме вдыхаемый газ смешивается мгновенно с альвеолярным газом. Состав газа в альвеолах практически гомогенен в любую респираторную фазу и в любой момент вентиляции.
Любое повышение альвеолярного транспорта кислорода и углекислого газа (напр. при физических нагрузках) сопровождается повышение градиентов концентрации газов, которые способствуют возрастанию их смешивания в альвеолах. Нагрузка стимулирует альвеолярное смешивание путем повышения потока вдыхаемого воздуха и возрастания кровотока, повышает альвеолярно-капиллярный градиент давления для кислорода и углекислого газа.
Диффузия газов.
Газообмен — совокупность процессов, обеспечивающих переход кислорода внешней среды в ткани живого организма, а углекислого газа из тканей во внешнюю среду.
Перемещение газов осуществляется под влиянием разности парциальных давлений и напряжений этих газов в каждой из сред организма.
Парциальное давление кислорода в воздухе, заполняющем альвеолы легких, около 100 мм рт. ст., а его напряжение в венозной крови, притекающей к легким, около 40 мм рт. ст. Вследствие разности давлений кислород из альвеол направляется в кровь, где связывается с гемоглобином эритроцитов. Парциальное давление углекислого газа в альвеолярном воздухе составляет 40 мм рт. ст., а его напряжение в притекающей к легким венозной крови — 48 мм рт. ст. Вследствие разности давлений углекислый газ переходит в альвеолы.
В артериальной крови, притекающей к тканям, напряжение кислорода выше, чем в тканях, а напряжение углекислого газа, наоборот, значительно ниже. Вследствие этого кислород переходит из крови в ткани и включается в цикл метаболических процессов, а углекислый газ, в избытке содержащийся в тканях, переходит в кровь и переносится затем в лёгкие. Процесс газообмена происходит непрерывно до тех пор, пока существует разность парциальных давлений и напряжений газов в каждой из сред, участвующих в газообмене решающим фактором, обусловливающим непрерывность газообмена, является постоянство газового состава альвеолярного воздуха.
Величина газообмена является показателем интенсивности окислительных процессов, протекающих в тканях. Об уровне газообмена можно судить и по величине минутной вентиляции легких. При спокойном дыхании через легкие проходит около 8000 мл воздуха в 1 мин. При физических и эмоциональных напряжениях, различных заболеваниях, сопровождающихся усилением окислительных процессов в тканях, легочная вентиляция возрастает.
Вентиляционно-перфузионные отношения в разных отделах легкого.
Кровоток в капиллярах легких и легочная вентиляция неодинаковы в различных отделах и зависят от положения тела.
Основное влияние на распределение перфузии в легких оказывает гравитация, что обусловлено низким АД в системе малого круга кровообращения (15-20 мм рт. ст.). Поэтому при любом положении тела в пространстве нижние отделы легких по сравнению с верхними будут иметь больший кровоток.
Зависимость перфузии от сил гравитации более выражена, чем у вентиляции, что определяет и характер изменения вентиляционно-перфузионных отношений по направлению от верхушек к основанию легких. Нормальная альвеолярная вентиляция (VA) у взрослых составляет ~ 4 л/мин, а общая легочная перфузия (Q) ~ 5 л/мин. Следовательно, отношение величин вентиляции и перфузии будет равно 4/5, или 0,8. Изменение отношения YA /Q будет отражать степень гипервентиляции (гипоперфузии) или гиперперфузии (гиповентиляции) в целом легком или в его отдельных зонах.
Распределение вентиляции зависит от нескольких факторов. Основным является растяжимость легочной ткани, которая неодинакова в различных легочных зонах.
Транспорт кислорода.
Транспорт О2 осуществляется в физически растворенном и химически связанном виде. Физические процессы, т. е. растворение газа, не могут обеспечить запросы организма в О2.
Согласно закону Фика, газообмен О2 между альвеолярным воздухом и кровью происходит благодаря наличию концентрационного градиента О2 между этими средами. В альвеолах легких парциальное давление О2 составляет 13,3 кПа, или 100 мм рт.ст., а в притекающей к легким венозной крови парциальное напряжение О2 составляет примерно 5,3 кПа, или 40 мм рт.ст. Давление газов в воде или в тканях организма обозначают термином «напряжение газов» и обозначают символами Ро2, Рсo2.
Транспорт О2 начинается в капиллярах легких после его химического связывания с гемоглобином. Гемоглобин (Нb) способен избирательно связывать О2 и образовывать оксигемоглобин (НbО2) в зоне высокой концентрации О2 в легких и освобождать молекулярный О2 в области пониженного содержания О2 в тканях. При этом свойства гемоглобина не изменяются и он может выполнять свою функцию на протяжении длительного времени.
Гемоглобин переносит О2 от легких к тканям. Эта функция зависит от двух свойств гемоглобина: 1) способности изменяться от восстановленной формы, которая называется дезоксигемоглобином, до окисленной (Нb + О2 à НbО2) с высокой скоростью (полупериод 0,01 с и менее) при нормальном Рог в альвеолярном воздухе; 2) способности отдавать О2 в тканях (НbО2 à Нb + О2) в зависимости от метаболических потребностей клеток организма.
Зависимость степени оксигенации гемоглобина от парциального давления Ог в альвеолярном воздухе графически представляется в виде кривой диссоциации оксигемоглобина, или сатурационной кривой. Плато кривой диссоциации характерно для насыщенной О2 (сатурированной) артериальной крови, а крутая нисходящая часть кривой — венозной, или десатурированной, крови в тканях.
На сродство кислорода к гемоглобину влияют различные метаболические факторы, что выражается в виде смещения кривой диссоциации влево или вправо. Сродство гемоглобина к кислороду регулируется важнейшими факторами метаболизма тканей: Ро2 pH, температурой и внутриклеточной концентрацией 2,3-дифосфоглицерата. Величина рН и содержание СО2 в любой части организма закономерно изменяют сродство гемоглобина к О2: уменьшение рН крови вызывает сдвиг кривой диссоциации соответственно вправо (уменьшается сродство гемоглобина к О2), а увеличение рН крови — сдвиг кривой диссоциации влево (повышается сродство гемоглобина к О2). Например, рН в эритроцитах на 0,2 единицы ниже, чем в плазме крови. В тканях вследствие повышенного содержания СО2 рН также меньше, чем в плазме крови. Влияние рН на кривую диссоциации оксигемоглобина называется «эффектом Бора».
Рост температуры уменьшает сродство гемоглобина к О2. В работающих мышцах увеличение температуры способствует освобождению О2. Уменьшение температуры тканей или содержания 2,3-дифосфоглицерата вызывает сдвиг влево кривой диссоциации оксигемоглобина.
Метаболические факторы являются основными регуляторами связывания О2 с гемоглобином в капиллярах легких, когда уровень O2, рН и СО2 в крови повышает сродство гемоглобина к О2 по ходу легочных капилляров. В условиях тканей организма эти же факторы метаболизма понижают сродство гемоглобина к О2 и способствуют переходу оксигемоглобина в его восстановленную форму — дезоксигемоглобин. В результате О2 по концентрационному градиенту поступает из крови тканевых капилляров в ткани организма.
Оксид углерода (II) — СО, способен соединяться с атомом железа гемоглобина, изменяя его свойства и реакцию с О2. Очень высокое сродство СО к Нb (в 200 раз выше, чем у О2) блокируют один или более атомов железа в молекуле гема, изменяя сродство Нb к О2.
Под кислородной емкостью крови понимают количество Ог, которое связывается кровью до полного насыщения гемоглобина. При содержании гемоглобина в крови 8,7 ммоль*л-1 кислородная емкость крови составляет 0,19 мл О2 в 1 мл крови (температура 0oC и барометрическое давление 760 мм рт.ст., или 101,3 кПа). Величину кислородной емкости крови определяет количество гемоглобина, 1 г которого связывает 1,36—1,34 мл О2. Кровь человека содержит около 700—800 г гемоглобина и может связать таким образом почти 1 л О2. Физически растворенного в 1 мл плазмы крови О2 очень мало (около 0,003 мл), что не может обеспечить кислородный запрос тканей. Растворимость О2 в плазме крови равна 0,225 мл*л-1*кПа-1.
Обмен О2 между кровью капилляров и клетками тканей также осуществляется путем диффузии. Концентрационный градиент О2 между артериальной кровью (100 мм рт.ст., или 13,3 кПа) и тканями (около 40 мм рт.ст., или 5,3 кПа) равен в среднем 60 мм рт.ст. (8,0 кПа). Изменение градиента может быть обусловлено как содержанием О2 в артериальной крови, так и коэффициентом утилизации О2, который составляет в среднем для организма 30— 40%. Коэффициентом утилизации кислорода называется количество О2, отданного при прохождении крови через тканевые капилляры, отнесенное к кислородной емкости крови.
С другой стороны, известно, что при напряжении О2 в артериальной крови капилляров, равном 100 мм рт.ст. (13,3 кПа), на мембранах клеток, находящихся между капиллярами, эта величина не превышает 20 мм рт.ст. (2,7 кПа), а в митохондриях равна в среднем 0,5 мм рт.ст. (0,06 кПа).
studopedia.net