Ушная улитка – подробная анатомия, строение и функции внутреннего уха.

подробная анатомия, строение и функции внутреннего уха.

Введение

Человеческое ухо представляет собой достаточно сложный орган, который помимо функции восприятия и интерпретации звуков, представляет собой сложный рецептор вестибулярного анализатора, благодаря которому он поддерживает равновесие тела и головы.

Строение уха не останавливается на видимой части в качестве ушной раковины, переднего лабиринта и внешнего слухового прохода. От нашего взгляда скрывается еще евстахиева труба, барабанная перепонка, косточки среднего уха, слуховой нерв и задний лабиринт.

Анатомия отделов

Ухо имеет 3 разных отдела, которые выполняют совершенно разные функции:

  • Наружноевходит в состав: слуховой канал и ушная раковину, которые улавливают звуки.
  • Среднее – располагается в височной кости и имеет 3 суставные части: стремечко, наковальню и молоточек, которые передают звуки дальше к улитке.
  • Внутреннее – состоит из 2 отделов: улитки (переднего лабиринта), что отвечает за слух и полукружных каналов (заднего лабиринта), который участвует в поддержании равновесия тела.

Улитка (передний лабиринт), содержит специальные структуры, благодаря которым происходит генерация слуховых сигналов.

Строение

Улитка или передний лабиринт во внутреннем отделе уха, представляет собой образование из костей, которое на вид похоже на объемную спираль в два с половиной оборота вокруг костного стержня.

Что касается своих размеров, у основания конуса ширина примерно 0.9 см, в длину, костная спираль – 3.2 см, а в высоту – 0.5 см.

Для справки! Передний лабиринт выполнен из относительно прочного материала. Причем некоторые ученые утверждают, что материал, из которого состоит ушная улитка, является самым крепким во всем человеческом организме.

Спиральная пластина берет свое основание в костном стержне и простирается далее вглубь лабиринта.

В начале самой улитки это образование намного шире, а по пути лабиринта, ближе к своему концу идет на сужение. В пластине имеется большое количество каналов, в которых находятся дендриты биполярных нейронов.

Основная мембрана, которая находится между стенкой полости и незадействованным краем пластины, улитковый канал делится на 2 отдела:

  1. Верхний отдел
    начинается с овального окна и простирается до верхней точки улитки.
  2. Нижний отдел берет свое начало от верхней точки улитки и доходит до круглого окна.

В вершине улитки, два отдела соединяются между собой при помощи узкого отверстия, которое именуется как – геликотрем.

Также стоит отметить, что оба отдела и верхний и нижний не полые, в них есть жидкость, которая по своим характеристикам схожа со спинномозговой и имеет название – перилимфа.

Вестибулярная мембрана делит верхний отдел еще на 2 полости:

  • улитковый проток;
  • лестницу.

В улитковом протоке располагается кортиев орган, который находится на базилярной мембране. Этот орган представляет собой звуковой анализатор.

В нем имеются слуховые и опорные рецепторные волосковые клетки, над которыми находится покровная мембрана, которая выглядит как желеобразная масса.

Функции

Основная функция переднего лабиринта заключается в том, чтобы передавать нервные сигналы, которые поступают благодаря среднему уху, к головному мозгу.

Причем вышеупомянутый кортиев орган, является очень важным в этом процессе, так как именно он преобразует первичный звуковой сигнал. Последовательность этого процесса выглядит следующим образом.

  1. Звуковой импульс доходит до уха и в нем попадает по мембране барабанной перепонки. Перепонка от этих импульсов начинает создавать вибрацию. Эти импульсы передаются на звуковые косточки: стремя, наковальню и молоток.
  2. Так как стремя напрямую соединено с улиткой, оно создает давление на жидкость, которая имеется в областях верхнего и нижнего отдела.

    Жидкость, также оказывает влияние на базилярную мембрану, в которой присутствуют слуховые нервы, создавая внутри вибрационную волну.

  3. Эти вибрационные волны заставляют двигаться реснички волосковых клеток в кортиевом органе, тем самым раздражая пластину, которая находится над ними.
  4. Теперь происходит последний этап преобразования звука, когда волосковые клетки, посредством нервных импульсов доставляют информацию относительно звукового сигнала к головному мозгу.

    Уже непосредственно в мозгу, происходит самый сложный процесс, который позволяет определить фоновый шум, от известных сигналов, сравнивая их с теми, что уже имеются в памяти, группируя их на группы и окончательно распознавая сигнал.

Весь этот процесс происходит за считанные доли секунды, так как все органы, что участвуют в этом процессе, работают синхронно и молниеносно с начала жизни человека.

Гигиена слуха

Чтобы предохранить свой орган слуха от развития в нем инфекций, обязательно необходимо соблюдать гигиенические меры

, постоянно следить за чистотой наружного слухового прохода и удалять избытки ушной серы, которые выделяются железами.

Уши необходимо мыть регулярно, банальным мылом и теплой водой. Серу нельзя удалять твердыми предметами, ведь в этом случае есть большой риск повредить барабанную перепонку.

Если возникла серная пробка, с этой проблемой необходимо обращаться к врачу и ни в коем случае не заниматься самолечением.

Важно понимать, что во время кори, ангины, гриппа и других заболеваний, микробы с легкостью могут попасть в среднее ухо и там вызвать воспалительный процесс. Нельзя подвергаться стрессу, слушать громкую музыку и подвергать уши громкому шуму.

Полезное видео

Ролик подробно рассказывает о строении уха:

Заключение

В заключение можно отметить, что из всего вышеописанного, несложно догадаться о том, какую важную функцию выполняет улитка, в каком ответственном процессе она задействована и насколько сложно ее строение, как целой системы, в которой каждый отдельный элемент выполняет свою важную функцию.

Благодаря тому, что во внутреннем отделе уха имеется улитка, каждый человек в состоянии в полной мере осознавать разнообразие разных звуков вокруг себя, представляя полную палитру окружающего мира.

dr-lor.com

Улитка (внутреннее ухо) — это… Что такое Улитка (внутреннее ухо)?

Ушная улитка — это передний отдел перепончатого лабиринта. Отвечает за слуховую часть внутреннего уха, воспринимающего и распознающего звуки.

Строение

Улитка — это заполненный жидкостью перепончатый канал, образующий два с половиной витка спирали. Внутри по всей длине расположен костный стержень. К противоположной стенке идут две плоские мембраны (основная и рейснерова), таким образом улитка по всей длине делится на три параллельных канала. Два наружных канала — лестница преддверия и барабанная лестница сообщаются между собой у верхушки улитки. Центральный (спиральный) канал началом сообщается с мешочком и слепо оканчивается.

Каналы заполнены жидкостью: спиральный канал — эндолимфой, лестница преддверия и барабанная лестница — перилимфой. Перилимфа имеет высокую концентрацию ионов натрия, а эндолимфа — ионов калия. Функцией эндолимфы, которая по отношению к перилимфе положительно заряжена, является создание электрического потенциала на разделяющей их мембране, который обеспечивает энергией процесс усиления входящих звуковых сигналов.

В сферической полости — преддверии, лежащем в основании улитки, начинается лестница преддверия. Через овальное окно (окно преддверия) один конец лестницы соприкасается с заполненной воздухом внутренней стенкой полости среднего уха. Барабанная лестница сообщается со средним ухом с помощью круглого окна (окна улитки). Овальное окно закрыто основанием стремени, а круглое — тонкой мембраной, отделяющей его от среднего уха, поэтому жидкость через эти окна проходить не может.

Спиральный канал отделяется от барабанной лестницы основной (базилярной) мембраной. Она содержит ряд натянутых поперек спирального канала параллельных волокон различной длины и толщины. Внутри мембрана покрыта рядами снабженных волосками клеток, составляющих кортиев орган, который преобразует звуковые сигналы в нервные импульсы, затем поступающие в головной мозг через слуховую часть преддверно-улиткового нерва. Волосковые клетки также связаны с окончаниями нервных волокон, по выходе из кортиева органа образующих нерв (улитковую ветвь преддверно-улиткового нерва).

См. также

Примечания

dic.academic.ru

Внутреннее ухо. Строение улитки. Микроструктура Кортиева органа. Проведение звуковых колебаний в улитке

Внутреннее ухо содержит рецепторный аппарат двух анализаторов: вестибулярного (пред­дверие и полукружные каналы) и слухового, к которому относится улитка с кортиевым органом.

Костная полость внутреннего уха, содержащая большое число камер и проходов между ними, называется лабиринтом. Он состоит из двух частей: костного лабиринта и перепончатого лабиринта. Костный лабиринт – это ряд полостей, расположенных в плотной части височной кости; в нем различают три составляющие: полукружные каналы – один из источников нервных импульсов, отражающих положение тела в пространстве; преддверие; и улитку – орган слуха.

Строение уха

Перепончатый лабиринт заключен внутри костного лабиринта. Он наполнен жидкостью, эндолимфой, и окружен другой жидкостью – перилимфой, которая отделяет его от костного лабиринта. Перепончатый лабиринт, как и костный, состоит из трех основных частей. Первая соответствует по конфигурации трем полукружным каналам. Вторая делит костное преддверие на два отдела: маточку и мешочек. Удлиненная третья часть образует среднюю (улиточную) лестницу (спиральный канал), повторяющую изгибы улитки.

Полукружные каналы. Их всего шесть – по три в каждом ухе. Они имеют дугообразную форму и начинаются и кончаются в маточке. Три полукружных канала каждого уха расположены под прямыми углами друг к другу, один горизонтально, а два вертикально. Каждый канал имеет на одном конце расширение – ампулу. Шесть каналов расположены таким образом, что для каждого существует противолежащий ему канал в той же плоскости, но в другом ухе, однако их ампулы расположены на взаимнопротивоположных концах.

Улитка и кортиев орган. Название улитки определяется ее спирально извитой формой. Это костный канал, образующий два с половиной витка спирали и заполненный жидкостью. Завитки идут вокруг горизонтально лежащего стержня — веретена, вокруг которого наподобие винта закручена костная спиральная пластинка, пронизанная тонкими канальцами, где проходят волокна улитковой ча­сти преддверно-улиткового нерва — VIII пары черепно-мозговых нервов. Внутри, на одной стенке спирального канала по всей его длине расположен костный выступ. Две плоские мембраны идут от этого выступа к противоположной стенке так, что улитка по всей длине делится на три параллельных канала. Два наружных называются лестницей преддверия и барабанной лестницей, они сообщаются между собой у верхушки улитки. Центральный, т.н. спиральный, канал улитки, оканчивается слепо, а начало его сообщается с мешочком. Спиральный канал заполнен эндолимфой, лестница преддверия и барабанная лестница – перилимфой. Перилимфа имеет высокую концентрацию ионов натрия, тогда как эндолимфа – высокую концентрацию ионов калия. Важнейшей функцией эндолимфы, которая заряжена положительно по отношению к перилимфе, является создание на разделяющей их мембране электрического потенциала, обеспечивающего энергией процесс усиления входящих звуковых сигналов.

Лестница преддверия начинается в сферической полости – преддверии, лежащем в основании улитки. Один конец лестницы через овальное окно (окно преддверия) соприкасается с внутренней стенкой заполненной воздухом полости среднего уха. Барабанная лестница сообщается со средним ухом с помощью круглого окна (окна улитки). Жидкость

не может проходить через эти окна, так как овальное окно закрыто основанием стремени, а круглое – тонкой мембраной, отделяющей его от среднего уха. Спиральный канал улитки отделяется от барабанной лестницы т.н. основной (базилярной) мембраной, которая напоминает струнный инструмент в миниатюре. Она содержит ряд параллельных волокон различной длины и толщины, натянутых поперек спирального канала, причем волокна у основания спирального канала короткие и тонкие. Они постепенно удлиняются и утолщаются к концу улитки, как струны арфы. Мембрана покрыта рядами чувствительных, снабженных волосками клеток, составляющих т.н. кортиев орган, который выполняет высокоспециализированную функцию – превращает колебания основной мембраны в нервные импульсы. Волосковые клетки связаны с окончаниями нервных волокон, по выходе из кортиева органа образующих слуховой нерв (улитковую ветвь преддверно-улиткового нерва).

Улитка уха

Перепончатый улитковый лабиринт, или проток, име­ет вид слепого преддверного выпячивания, находящегося в костной улитке и слепо заканчивающегося на ее верхушке. Он заполнен эндолимфой и представляет собой соедини­тельно-тканный мешок длиной около35 мм. Улитковый проток разделяет костный спиральный канал на три части, занимая среднюю из них — средняя лестница (scala media), или улитковый ход, или улиточный канал. Верх­няя часть — это лестница преддверия (scala vestibuli), или вестибулярная лестница, нижняя — барабанная, или тим­панальная, лестница (scala tympani). В них находится пери-лимфа. В области купола улитки обе лестницы сообщают­ся между собой через отверстие улитки (геликотрему). Ба­рабанная лестница простирается до основания улитки, где она заканчивается у круглого окна улитки, закрытого вто­ричной барабанной перепонкой. Лестница преддверия со­общается с перилимфатическим пространством преддверия. Следует отметить, что перилимфа по своему составу напо­минает плазму крови и цереброспинальную жидкость; в ней преобладает содержание натрия. Эндолимфа отличает­ся от перилимфы более высокой (в 100 раз) концентраци­ей ионов калия и более низкой (в 10 раз) концентрацией ионов натрия; по своему химическому составу она напоми­нает внутриклеточную жидкость. По отношению к пери-лимфе она заряжена положительно.

Улитковый проток на поперечном разрезе имеет тре­угольную форму. Верхняя — преддверная стенка улитко­вого протока, обращенная к лестнице преддверия, обра­зована тонкой преддверной (рейсснеровой) мембраной (membrana vestibularis), которая изнутри покрыта одно­слойным плоским эпителием, а снаружи — эндотелием. Между ними расположена тонкофибриллярная соедини­тельная ткань. Наружная стенка срастается с надкостни­цей наружной стенки костной улитки и представлена спиральной связкой, которая имеется во всех завитках улитки. На связке расположена сосудистая полоска (stria vascularis), богатая капиллярами и покрытая кубическими клетками, которые продуцируют эндолимфу. Нижняя — барабанная стенка, обращенная к барабанной лестнице, устроена наиболее сложно. Она представлена базилярной мембраной, или пластинкой (lamina basilaris), на которой располагается спиральный, или кортиев орган, осуществ­ляющий восприятие звуков. Плотная и упругая базиляр-ная пластинка, или основная мембрана, одним концом прикрепляется к спиральной костной пластинке, противо­положным — к спиральной связке. Мембрана образована тонкими слабо натянутыми радиальными коллагеновыми волокнами (около 24 тыс.), длина которых возрастает от основания улитки к ее вершине — вблизи овального окна ширина базилярной мембраны составляет0,04 мм, а за­тем по направлению к вершине улитки, постепенно рас­ширяясь, она достигает в конце0,5 мм(т.е. базилярная мембрана расширяется там, где улитка сужается). Волок­на состоят из тонких анастомозирующих между собой фибрилл. Слабое натяжение волокон базилярной мембра­ны создает условия для их колебательных движений.

Собственно орган слуха — кортиев орган — находится в костной улитке. Кортиев орган — рецепторная часть слухового анализатора, расположенная внутри перепончатого лабиринта. В процессе эволюции возникает на основе структур боковых органов. Воспринимает колебания волокон, расположенных в канале внутреннего уха, и передаёт в слуховую зону коры больших полушарий, где и формируются звуковые сигналы. В Кортиевом органе начинается первичное формирование анализа звуковых сигналов.

Расположение. Кортиев орган располагается в спирально завитом костном канале внутреннего уха — улитковом ходе, заполненном эндолимфой и перилимфой. Верхняя стенка хода прилегает к т. н. лестнице преддверия и называется рейснеровой перепонкой; нижняя стенка, граничащая с т. н. барабанной лестницей, образована основной перепонкой, прикрепляющейся к спиральной костной пластинке. Корти­ев орган представлен опорными, или поддерживающими, клетками, и рецепторными клетками, или фонорецепторами. Выделяют два типа опорных и два типа рецепторных клеток — наружные и внутренние.

Наружные опорные клетки лежат дальше от края спиральной костной пластинки, а внутренние — ближе к нему. Оба вида опорных клеток сходятся под острым углом друг к другу и образуют канал треугольной фор­мы — внутренний (кортиев) туннель, заполненный эндо-лимфой, который проходит спирально вдоль всего корти-ева органа. В туннеле расположены безмиелиновые не­рвные волокна, идущие от нейронов спирального ганглия.

Фонорецепторы лежат на опорных клетках. Они представляют собой вторично-чувствующие рецепторы (механорецепторы), трансформирующие механические ко­лебания в электрические потенциалы. Фонорецепторы (на основании их отношения к кортиеву туннелю) подразде­ляются на внутренние (колбообразной формы) и наруж­ные (цилиндрической формы), которые отделены друг от друга кортиевыми дугами. Внутренние волосковые клетки располагаются в один ряд; их общее число по всей длине перепончатого канала достигает 3500. Наружные волос­ковые клетки располагаются в 3-4 ряда; их общее число достигает 12000-20000. Каждая волосковая клетка имеет удлиненную форму; один ее полюс приближен к основ­ной мембране, второй находится в полости перепончатого канала улитки. На конце этого полюса есть волоски, или стереоцилии (до 100 в клетке). Волоски рецепторных клеток омываются эндолимфой и контактируют с покров­ной, или текториальной, мембраной (membrana tectoria), которая по всему ходу перепончатого канала расположе­на над волосковыми клетками. Эта мембрана имеет желе­образную консистенцию, один край которой прикрепляет­ся к костной спиральной пластинке, а другой свободно оканчивается в полости улиткового протока чуть дальше наружных рецепторных клеток.

Все фонорецепторы, независимо от локализации, синаптически связаны с 32000 дендритов биполярных чувствительных клеток, находящихся в спиральном нервном ганглии улитки. Эти первые нейроны слухового пути, аксоны которых образуют улитковую (кохлеарную) часть VIII пары черепно-мозговых нервов; они передают сигналы на кохлеарные ядра продолговатого мозга. При этом сигналы от каждой внутренней волосковои клетки передаются на биполярные клетки одновременно по не­скольким волокнам (вероятно, это повышает надежность передачи информации), в то время как сигналы от нескольких наружных волосковых клеток конвергируют на одном волокне. Поэтому около 95% волокон слухо­вого нерва несет информацию в продолговатый мозг от внутренних волосковых клеток (хотя их количество не превышает 3500), а 5% волокон передают информацию от наружных волосковых клеток, число которых дос­тигает 12000-20000. Эти данные подчеркивают огром­ную физиологическую значимость внутренних волоско­вых клеток в рецепции звуков.

К волосковым клеткам подходят и эфферентные во­локна — аксоны нейронов верхней оливы. Волокна, приходящие к внутренним волосковым клеткам, оканчива­ются не на самих этих клетках, а на афферентных волок­нах. Предполагается, что они оказывают тормозное воз­действие на передачу слухового сигнала, способствуя обострению частотного разрешения. Волокна, приходящие к наружным волосковым клеткам, воздействуют на них непосредственно и за счет изменения их длины, меняют их фоночувствительность. Таким образом, с помощью эф­ферентных оливо-кохлеарных волокон (волокон пучка Расмуссена) высшие акустические центры регулируют чувствительность фонорецепторов и поток афферентных импульсов от них к мозговым центрам.

Проведение звуковых колебаний в улитке. Восприя­тие звука осуществляется с участием фонорецепторов. Их возбуждение под влиянием звуковой волны приводит к генерации рецепторного потенциала, который вызывает возбуждение дендритов биполярного нейрона спирально­го ганглия. Но каким образом осуществляется кодирова­ние частоты и силы звука? Это один из наиболее слож­ных вопросов физиологии слухового анализатора.

Современное представление о коди­ровании частоты и силы звука сводится к следующему. Звуковая волна, воздействуя на систему слуховых косто­чек среднего уха, приводит в колебательное движение мембрану овального окна преддверия, которая, прогиба­ясь, вызывает волнообразные перемещения перилимфы верхнего и нижнего каналов, которые постепенно затуха­ют по направлению к вершине улитки. Поскольку все жидкости несжимаемы, колебания эти были бы не­возможны, если бы не мембрана круглого окна, которая выпячивается при надавливании основания стремечка на овальное окно и принимает исходное положение при прекращении давления. Колебания перилимфы передают­ся на вестибулярную мембрану, а также на полость сред­него канала, приводя в движение эндолимфу и базиляр-ную мембрану (вестибулярная мембрана очень тонкая, поэтому жидкость в верхнем и среднем каналах колеб­лется так, как будто оба канала едины). При действии на ухо звуков низкой частоты (до 1000 Гц) происходит сме­щение базилярной мембраны на всем ее протяжении от основания до верхушки улитки. При увеличении частоты звукового сигнала происходит перемещение укороченного по длине колеблющегося столба жидкости ближе к овальному окну, к наиболее жесткому и упругому участ­ку базилярной мембраны. Деформируясь, базилярная мембрана смещает волоски волосковых клеток относи­тельно текториальной мембраны. В результате такого смещения возникает электрический разряд волосковых клеток. Существует прямая зависимость между амплиту­дой смещения основной мембраны и количеством вовле­каемых в процесс возбуждения нейронов слуховой коры.

Механизм проведения звуковых колебаний в улитке

Звуковые волны улавливаются ушной раковиной и через слуховой канал направляются к барабанной перепонке. Колебания барабанной перепонки, через систему слуховых косточек, передаются посредством стремечка мембране овального окна, и через нее передаются лимфатической жидкости. На колебания жидкости отзываются (резонируют), в зависимости от частоты колебаний, только определенные волокна главной мембраны. Волосковые клетки Кортиева органа возбуждаются от прикосновения к ним волокон главной мембраны и по слуховому нерву передаются в мозг импульсы, где и создается окончательное ощущение звука.

www.braintools.ru

Ушная улитка Википедия

У этого термина существуют и другие значения, см. Улитка (значения).
Улитка
лат. cochlea

Строение улитки
Каталоги
  • MeSH
  • MeSH
  • Gray?
  • FMA[1]
  • TA98
 Медиафайлы на Викискладе

Ушна́я ули́тка (лат. Cochlea) — это передний отдел перепончатого лабиринта. Отвечает за слуховую часть внутреннего уха, воспринимающего и распознающего звуки.

Содержание

  • 1 Строение
  • 2 См. также
  • 3 Примечания
  • 4 Ссылки

Строение[ | ]

ru-wiki.ru

Функции улитки в ухе человека. Что такое улитка внутреннего уха? Перепончатый лабиринт, структура

Ухо считается наиболее сложным органом человеческого тела. Она позволяет воспринимать звуковые сигналы и контролирует положение человека в пространстве.

Анатомическое строение

Орган парный, и расположен он в височном отделе черепа, в области пирамидальной кости. Условно, анатомию внутреннего уха можно разделить на три основных зоны:

  • Внутреннее ухо, состоящее из нескольких десятков элементов.
  • Среднее ухо. Данная часть включает в себя барабанную полость (перепонку) и специальные слуховые косточки (самая маленькая кость в теле человека).
  • Наружное ухо. Состоит из наружного слухового прохода и ушной раковины.

Внутреннее ухо включает в себя два лабиринта: перепончатый и костный. Костный лабиринт состоит из полых внутри элементов, соединенных друг с другом. Лабиринт отлично защищен от воздействия извне.

Внутрь костного лабиринта помещен перепончатый лабиринт, идентичный по форме, но меньший по размеру.

Полость внутреннего уха заполняется двумя жидкостями: перилимфой и эндолимфой.

  • Перилимфа служит для заполнения межлабиринтовых полостей.
  • Эндолимфа — это густая прозрачная жидкость, что присутствует в перепончатом лабиринте и циркулирует по нему.

Внутреннее ухо состоит из трех частей:

  • улитка,
  • преддверие;
  • полукружные каналы.

Строение полукружных каналов начинается с центра лабиринта — это преддверие. В задней части уха данная полость соединяется с полукружным каналом. Сбоку на стенке имеются «окна» — внутренние отверстия канала улитки. Одно из них соединено со стремечком, второе, имеющее дополнительную барабанную перепонку, сообщается со спиральным каналом.

Строение улитки простое. Спиральная костная пластина располагается по всей длине улитки, разделяя ее на два отдела:

  • барабанная лестница;
  • преддверная лестница.

Главная особенность полукружных каналов состоит в т

pregnanty.ru

Улитка (внутреннее ухо) — строение и функции данного органа

Ухо человека – это уникальный орган не только по своему строению, но и по выполняемым функциям. Так, он воспринимает звуковые колебания, отвечает за сохранение равновесия и обладает способностью удерживать тело в пространстве в определенном положении.

Каждая из этих функций выполняется одним из трех отделов уха: наружным, средним и внутренним. Далее речь пойдет именно о внутреннем отделе, а конкретнее об одной из его составляющей – улитке уха.

Строение улитки внутреннего уха

Структура внутреннего уха представлена лабиринтом, состоящего из костной капсулы и перепончатого образования, который повторяет форму этой же капсулы.

Расположение улитки в костном лабиринте внутреннего уха

Костный лабиринт состоит из следующих отделов:

  • полукружные каналы;
  • преддверие;
  • улитка.

Улитка в ухе – это костное образование, которое имеет вид объемной спирали в 2,5 оборота вокруг костного стержня. В ширину основание конуса улитки составляет 9 мм, а в высоту – 5 мм. В длину же костная спираль – 32 мм.

Справка. Ушная улитка состоит и сравнительно прочного материала, по мнению некоторых ученых этот материал является одним из самых прочных во всем теле человека.

Начиная свой путь в костном стержне, спиральная пластина идет внутрь лабиринта. Это образование в начале улитки широкое, а ближе к ее завершению поэтапно начинает сужаться. Пластина вся испещрена каналами, в которых расположены дендриты биполярных нейронов.

Улитка внутреннего уха в разрезе

Благодаря основной (базилярной) мембране, расположенной между незадействованным краем данной пластины и стенкой полости, происходит деление улиткового канала на 2 хода либо лестницы:

  1. Верхний канал либо лестница преддверия — берет свое начало у овального окна и протягивается вплоть до вершинной точки улитки.
  2. Нижний канал либо барабанная лестница — простирается от вершинной точки улитки вплоть до круглого окна.

Оба канала в вершине улитки соединены узким отверстием – геликотремом. Также обе полости заполнены перилимфой, которая по характеристикам напоминает спинномозговую жидкость.

Вестибулярная (рейснерова) мембрана разделяет верхний канал на 2 полости:

  • лестницу;
  • перепончатый канал, получивший название улиткового протока.

В улитковом протоке на базилярной мембране находится кортиев орган – звуковой анализатор. В его состав входят опорные и слуховые рецепторные волосковые клетки, над которыми расположена покровная мембрана, напоминающая своим видом желеобразную массу.

Строение кортиева органа, отвечающего за начало обработки звуков

Функции улитки внутреннего уха

Главная функция улитки в ухе – это передача нервных импульсов, поступающих из среднего уха к головному мозгу, при этом кортиев орган является очень важным звеном в цепи, поскольку именно в нем начинается первичное формирование анализа звуковых сигналов. Какая же последовательность выполнения такой функции?

Итак, когда звуковые колебания достигают уха, то они ударяются о мембрану барабанной перепонки, тем самым вызывая вибрацию в ней. Далее вибрация достигает 3 слуховых косточек (молоточка, наковальни, стремечка).

Соединенное с улиткой стремечко оказывает влияние на жидкость в областях: лестнице преддверия и барабанной лестнице. При этом жидкость оказывает воздействие на базилярную мембрану, включающую в себя слуховые нервы, и создает на ней вибрационные волны.

От образованных вибрационных волн реснички волосковых клеток в анализаторе звуков (кортиевом органе) приходят в движение, раздражая пластину, расположенную над ними как полог (покровную мембрану).

Затем данный процесс подходит к завершающему этапу, где волосковые клетки передают импульс о характеристиках звуков в головной мозг. При этом последний как сложный логический процессор приступает к отделению полезных звуковых сигналов от фонового шума, распределяя их по группам по различным характеристикам и отыскивая в памяти подобные образы.

Завершающий этап процесса преобразования звуковых волн

Подводя итоги всего вышесказанного, можно отметить, что строение внутреннего уха представляет собой весьма сложную систему, где каждая составляющая ответственна за определенную функцию.

Благодаря тому, что улитка входит в состав уха, а конкретнее в его внутренний отдел, мы можем в полной мере наслаждаться разнообразием звуков, которым так богат наш окружающий мир.

gorlonos.com

Заглянем в улитку. Слух с точки зрения инженера

ПРОЦЕССОР В УХЕ

Наука и жизнь // Иллюстрации

Итальянский анатом А. Корти (1822-1876), описавший строение улитки уха.

Д. Бекеши (1899-1972), получивший в 1961 году за исследования природы слуха Нобелевскую премию, в своей лаборатории.

На схеме улитки уха указаны области базальной мембраны, возбуждаемые колебаниями различных частот. Начало улитки механически связано со стремечком, одной из косточек среднего уха.

Х. Флетчер (1884-1981) построил кривые равной громкости, используемые в качестве международного стандарта.

Громкость для КРГ обозначена в фонах. На различных участках диапазона частот одной и той же громкости соответствует различное звуковое давление (уровень громкости) в децибелах. Различие в звуковом давлении особенно выражено при малых громкостях.

В радиоприемниках высокого класса, которые выпускались в 40-50-х годах прошлого века, были регуляторы тембра в области верхних и нижних частот и регуляторы громкости с тонкомпенсацией.

Памятник человеческому уху, установленный на площади Рудольфа в Кёльне. Правый кулак этого символа по размерам больше левого, что указывает на преимущество правого уха перед левым.

Аллегорическая скульптура, изображающая женщину, которая слушает звуки Вселенной и передает эти звуки лежащему мужчине. И она и он воспринимают звуки правым ухом.

Еще в Древней Греции философ и математик Пифагор Самосский (ок. 580-500 до н.э.) установил, что звук — это распространяющиеся во все стороны колебания воздуха. А вот природа слуха долгое время была тайной за семью печатями (см. «Наука и жизнь» № 4, 2006 г.).

Лишь в середине XIX века, после того как А. Корти описал строение находящейся во внутреннем ухе улитки, которую позже в его честь назвали кортиевым органом, немецкий физик и физиолог Г. Гельмгольц (1821-1894) высказал интересную гипотезу. Он обратил внимание, что во время пения без аккомпанемента начинают резонировать струны стоящего неподалеку рояля. Гельмгольц предположил, что подобным же образом реагируют на звуковые колебания волосковые клетки, покрывающие поверхность базальной (основной) мембраны кортиева органа, то есть каждая из них отзывается на тон определенной высоты.

Гельмгольц интересовался акустикой и как разделом физики. В частности, он изобрел резонаторы, которые используются поныне и известны под названием «фазоинвертор».

Прошло еще почти сто лет, когда ставший впоследствии нобелевским лауреатом венгр Д. Бекеши увлекся анатомией и попытался разобраться в механизме слуха. Он научился делать вскрытия, но поначалу потерпел неудачу: после смерти человека кортиев орган быстро обезвоживается, и исследователю не удавалось проследить поведение базальной мембраны улитки в динамике. В 1928 году Бекеши решил подойти к решению проблемы с другой стороны и построил механическую модель улитки. Чтобы было проще следить за происходящими в улитке процессами, многие детали изобретатель сделал из прозрачных материалов, а мембрану — из резиновой пластины.

Подавая на вход улитки механические звуковые колебания, Бекеши обратил внимание, что вибрации различной частоты вынуждают колебаться разные участки мембраны: высокие тона деформируют ее часть, примыкающую к среднему уху, низкие тона вызывают деформации в дальнем конце. Деформации и возбуждают находящиеся в этих областях рецепторы — волосковые клетки. Подобное свойство мембраны Бекеши назвал эффектом бегущей волны.

Прорывными в области исследования физиологии слуха нужно считать работы группы сотрудников Гарвардского университета (США) под руководством профессора психологии Н. Кьянга. В 1965 году там начали эксперименты по определению параметров сигналов, идущих от кортиева органа в соответствующие отделы полушарий головного мозга.

Исследования проводились на животных и энтузиастах-добровольцах. В волокна слухового нерва им вводили тончайшие электроды. Ученым удалось установить, что в ответ на звуковой раздражитель от улитки через отдельное волокно идут серии импульсов, тем более длинные, чем более высоким был звук. Волокно могло пропускать до 200-300 импульсов в секунду. Поскольку человек способен слышать звуки до 20 000 Гц, следует предположить, что в передаче информации в мозг даже для сигнала одной частоты участвуют множество нервных волокон.

В середине 1970-х годов работы в этом направлении продолжили американцы М. Сакс и Э. Янг из Университета Джона Хопкинса. Они исследовали реакцию слухового нерва на сложные сигналы, в частности на речь. Оказалось, что мозг не только определяет частоту звука, но и получает более обширную информацию по распределению импульсов в серии. Благодаря этому свойству мозга мы можем среди шума улавливать речь или локализовать источник звука в пространстве.

Сделанные открытия позволили прийти к выводу, что кортиев орган совмещает в себе функции анализатора спектра и своеобразного аналого-цифрового преобразователя.

Результаты, достигнутые учеными, позволили создать устройства, дающие возможность слышать абсолютно глухим людям. «Искусственное ухо» преобразует звуковой сигнал в серии импульсов. С помощью вживленных в волокна слухового нерва сверхминиатюрных электродов (их число в наиболее совершенных аппаратах может достигать 22) импульсы передаются в соответствующий отдел коры головного мозга. Пациенты получают возможность распознавать одно- и двусложные слова, что уже обеспечивает довольно устойчивую их связь с внешним миром.

СТАНДАРТЫ ГРОМКОСТИ

В конце 1920-х годов выпускалась масса радиоаппаратуры, оснащенной усилителями низкой, или звуковой, частоты. Однако отсутствовала теоретическая база, которая позволяла бы грамотно подбирать параметры этих усилителей, в частности амплитудно-частотную характеристику, поскольку не было известно, как ухо воспринимает те или иные частоты.

Проблемой занялись специалисты из нью-йоркской Лаборатории Белла. Работами руководил известный акустик Х. Флетчер, сконструировавший первые слуховые аппараты для химического магната А. Дюпона и великого изобретателя Т. Эдисона.

Чтобы установить характер и степень чувствительности уха к различным частотам слышимого диапазона, Флетчер провел широкомасштабные эксперименты. Для испытаний выбирались здоровые молодые мужчины и женщины в возрасте 18-25 лет. В наушниках они слышали сигналы различной частоты и сообщали, при каком звуковом давлении громкость этих сигналов им казалась одинаковой. Чтобы уменьшить субъективные погрешности, каждый тест повторяли по многу раз.

Результаты были оформлены в виде семейства так называемых кривых равной громкости (КРГ). Они показывают чувствительность уха к различным частотам в зависимости от громкости звука. Для характеристики субъективного восприятия громкости ученые предложили особую единицу — фон. Каждой кривой присваивают свое значение в фонах. На частоте 1000 Гц 1 фон = 1 дБ. Возьмем для примера кривую громкостью 40 фон, наиболее комфортной для слуха на этой частоте, где ей соответствует звуковое давление 40 дБ. На частоте, например, 4000 Гц громкость 40 фон = 35 дБ, на частоте 10 000 Гц 40 фон = 50 дБ, а на частоте 80 Гц 40 фон = 80 дБ. После опубликования кривых в 1933 году Международная организация стандартизации (ISO — International Organization for Standardization) рекомендовала использовать их в качестве стандарта.

Как видно, при большой громкости кривые чувствительности имеют более плоский характер, а при низких громкостях разница в чувствительности выше. Инженеры немедленно воспользовались этими характеристиками, и чтобы сделать звучание радиоаппаратуры более естественным, ее снабжали одним или двумя регуляторами тембра. В качестве регуляторов громкости высококачественных усилителей применяли тонкомпенсаторы, которые при малой громкости снижали коэффициент усиления на высоких и средних частотах. Позже появились и более сложные устройства — эквалайзеры.

Высокая чувствительность в диапазонах 1000-5000 Гц имеет важное значение и в теории музыки. Голоса с обертонами, находящимися в этой частотной области, называют высокой певческой формантой. Обладатели таких голосов могут, не напрягаясь, добиться того, что их услышат на самых задних рядах даже очень больших концертных залов.

В 1956 году два американских инженера Д. Робинсон и Р. Дадсон для определения кривых равной громкости использовали два громкоговорителя, что больше соответствовало реальной жизни, когда человек находится в открытом пространстве звукового поля. Семейство КРГ получилось несколько иным, чем у Флетчера, который пользовался наушниками. Новые эксперименты показали, например, меньшую чувствительность уха к низким частотам и позволили построить иной график порога слышимости. Эти кривые служили международным стандартом до 2003 года. Однако выполненные на самом современном техническом уровне аудиометрические измерения в Англии, Германии, Дании, США, Японии показали, что кривые Флетчера ближе к истине, и на их основе разработан действующий стандарт ISO 226:2003.

СЫТОЕ БРЮХО — К МУЗЫКЕ ГЛУХО

По информативности орган слуха не уступает глазам, а подчас и превосходит их. Даже во время сна слух работает — иначе не появился бы в нашем обиходе такой прибор, как будильник.

К сожалению, качество слуха у человека на протяжении жизни ухудшается. К старости верхняя граница слышимого диапазона падает до 7000-8000 Гц. Это лишает многих пожилых людей возможности заниматься профессией, выбранной в молодые годы. Хороший слух важен не только для музыкантов, но и для врачей-терапевтов или механиков по двигателям внутреннего сгорания — они по спектрам звуков определяют состояние человеческого организма и работоспособность машины.

Раннему снижению слуха способствуют те же факторы, которые вызывают атеросклероз, — малоподвижный образ жизни, жирная пища, курение.

Чувствительность к звукам меняется и в течение более коротких промежутков времени. Так, слух заметно ухудшается на 2-3 часа после еды. Вообще, в послеобеденное время снижается общий тонус организма, поскольку в области органов пищеварения скапливается много крови. Музыканты приходят на концерт или гидроакустики заступают на вахту непременно натощак. То же касается и слушателей. Чтобы получить максимум удовольствия от музыкального произведения, его лучше воспринимать на голодный желудок.

У органа слуха есть еще одна интересная особенность. В отличие, скажем, от зрения информация, поступающая в мозг от левого и правого уха, не полностью равноценна. Как правило, у правшей главное ухо — правое (у левшей — наоборот). Это заметно хотя бы по тому, что, например, при разговоре по телефону мы прикладываем трубку именно к правому уху. Если слушать «неправильным» ухом, то возникает определенный психологический дискомфорт. Так же инстинктивно мы поворачиваемся к говорящему шепотом именно тем ухом, которым лучше слышим.

Специалисты объясняют феномен правого уха тем, что сигналы от него поступают в левое полушарие, где находится речевой центр. Сигналы от левого уха поступают сначала в правое полушарие, а оттуда по нервным связям — в левое полушарие, хотя и с крошечной задержкой.

www.nkj.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *